Abstract
This paper describes the implementation of a two-dimensional hydrodynamic flood model with two different numerical schemes on heterogeneous high-performance computing architectures. Both schemes were able to solve the nonlinear hyperbolic shallow water equations using an explicit upwind first-order approach on finite differences and finite volumes, respectively, and were conducted using MPI and CUDA. Four different test cases were simulated on the Summit supercomputer at 91做厙. Both numerical schemes scaled up to 128 nodes (768 GPUs) with a maximum 98.2x speedup of over 1 GPU. The lowest run time for the 10 day Hurricane Harvey event simulation at 5 meter resolution (272 million grid cells) was 50 minutes. GPUDirect communication proved to be more convenient than the standard communication strategy. Both strong and weak scaling are shown.