Abstract
The plasma-surface interactions from samples of high-conductivity graphitic foam biased to 120 V and placed in 6–8 eV deuterium plasmas with densities as high as 1019 m−3 were investigated at the PSI-2 linear plasma device in Jülich. Graphitic foam-plasma interactions were also studied at the Wendelstein 7-X (W7-X) stellarator in Greifswald by exposure to hydrogen and helium plasmas using the Jülich multi-purpose manipulator. The purpose was to explore the possibility of using the material in a plasma facing component, and initial results were encouraging. In W7-X, no measurable erosion or cracking was observed. The PSI-2 samples received a deuterium fluence of 5 × 1025 m−2 resulting in an average erosion of 43 µm or about 5 mg per sample. Residual gas analysis (RGA) data were acquired to monitor sample outgassing. Laser-induced Breakdown Spectroscopy (LIBS) was used to measure deuterium retention in the porous foam. After exposure, the surfaces were characterized with scanning electron microscopy, energy dispersive x-ray analysis and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The graphitic foam has a thermal conductivity as high as 287 W/mK and is considered as a replacement to more exotic carbon fiber composites such as SepCarb NB31 or isotropic graphites like ATJ that are no longer produced but used in present-day tokamak experiments. Actively cooled monoblocks were made from the foam and underwent extensive materials characterization including infrared response studies at 91°µÍø. This material is under consideration for the proposed actively-cooled W7-X divertor scraper element.