Abstract
Progress towards fielding luminescence-based temperature measurements for the Versatile Affordable Advanced Turbine Engine (VAATE) program is described. The near term programmatic objective is to monitor turbine vane temperatures and health by luminescence from a rare-earth doped thermal barrier coating (TBC), or from a thermographic phosphor layer coated onto a TBC. The first goal is to establish the temperature measurement capability
to 1300繙C with 1 percent uncertainty in a test engine. An eventual goal is to address rotating turbine blades in an F135 engine. The project consists of four phases, of which the first two have been completed and are described in this paper. The first phase involved laser heating of a 2.54-cm-diameter test sample, coated with a TBC and a thermographic
phosphor layer, to produce a thermal gradient across the TBC layer similar to that expected in a turbine engine. Phosphor temperatures correlated well with those measured by long wavelength pyrometry. In the second phase, 10x10- cm coupons were exposed to a jet fuel flame at a burner rig facility. The thermographic phosphor/TBC combination survived the aggressive flame and high exhaust gas velocity, even though the metal substrate melted. Reliable temperature measurements were made up to about 1400繙C using YAG:Dy as the thermographic phosphor. In addition, temperature measurements using YAG:Tm showed very desirable background radiation suppression.