Abstract
High strength carbon fibers were surface treated by a continuous gas phase thermo-chemical surface treatment. The surface and the mechanical properties of the fibers were investigated before and after treatment and compared to the properties obtained with a conventional industrial electro-chemical surface treatment. An increase of the oxygen atomic content from 3 % to 20 % with a preferential generation of carboxylic acid functionalities and hydroxyl groups was highlighted after the thermo-chemical surface treatment, compared to an oxygen atomic content of 7 % and a wide variety of oxygen moieties with the electro-chemical surface treatment. The tensile strength of the fibers increased slightly after the thermo-chemical surface treatment and remained the same after the electro-chemical surface treatment. Short beam shear and 90簞 flexural tests of composites revealed that the improvement of interfacial adhesion with a vinyl ester matrix was limited, revealing that oxidation of the carbon fiber surface alone cannot tremendously improve the mechanical properties of carbon fiber-vinyl ester composites. Atomic force microscopy showed that the creation of roughness with both surface treatments at a nanometric scale. Although the surface is slightly rougher after the electro-chemical surface treatment and is expected to lead to higher adhesion due to mechanical interlocking between the fiber surface and the matrix, the effect of covalent bonding coming from the high concentration of chemical groups on the surface results in higher adhesion strength, as obtained with the thermo-chemical surface treatment.