91

Skip to main content
SHARE
Publication

Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys

by Ying Yang, Hongbin Bei, Easo P George, Jaimie Tiley
Publication Type
Journal
Journal Name
Journal of Alloys and Compounds
Publication Date
Volume
556

Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructure or forming any brittle  phase at 1600C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young’s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.