Abstract
Multilayer graphane (hydride of graphite) is a crystalline hydrocarbon of composition CH, which can be synthesized from graphite and molecular hydrogen at pressures above 2 GPa [V.E. Antonov et al. Carbon 100 (2016) 465]. Using X-ray diffraction, this compound was tentatively identified as the 鈥済raphane II鈥� phase of 3D-graphane predicted by ab initio calculations [X.-D. Wen et al. PNAS 108 (2011) 6833] and consisting of layers of 2D-graphane in the 鈥渃hair鈥� conformation. When heated in a vacuum, the compound does not form any intermediate hydrocarbons and reversibly decomposes back into graphite and hydrogen at 770鈥�920 K. In the present work, almost single-phase samples of graphite hydride and deuteride were synthesized at 7.4 GPa and 870 K. Their investigation by inelastic neutron scattering supplemented by ab initio calculations gave spectra g(E) of the phonon density of states with a gap of about 15 meV at approx. 100 meV, which is a unique identifier for the chair form of graphane. The equation of state V(P) of the hydride was studied at room temperature and hydrogen pressures up to 53 GPa by synchrotron X-ray diffraction in a diamond anvil cell. The graphane II phase did not react with the surrounding hydrogen and did not undergo any phase transformations upon the compression and after heating to 1500 K at 53 GPa. The high thermal and pressure stability of this exotic phase makes it an important part of the C鈥揌 system. The obtained g(E) spectra of graphite hydride and deuteride were used to calculate temperature dependences of their heat capacity. Measurements of the heat capacity at temperatures 120鈥�673 K confirmed the good accuracy of these calculations.