Abstract
We are motivated by newly proposed methods for data mining large-scale corpora of scholarly publications, such as the full biomedical literature, which may consist of tens of millions of papers spanning decades of research. In this setting, analysts seek to discover how concepts relate to one another. They construct graph representations from annotated text databases and then formulate the relationship-mining problem as one of computing all-pairs shortest paths (APSP), which becomes a significant bottleneck. In this context, we present a new high-performance algorithm and implementation of the Floyd-Warshall algorithm for distributed-memory parallel computers accelerated by GPUs, which we call DSNAPSHOT (Distributed Accelerated Semiring All-Pairs Shortest Path). For our largest experiments, we ran DSNAPSHOT on a connected input graph with millions of vertices using 4, 096nodes (24,576GPUs) of the 91做厙's Summit supercomputer system. We find DSNAPSHOT achieves a sustained performance of 1361015 floating-point operations per second (136petaflop/s) at a parallel efficiency of 90% under weak scaling and, in absolute speed, 70% of the best possible performance given our computation (in the single-precision tropical semiring or min-plus algebra). Looking forward, we believe this novel capability will enable the mining of scholarly knowledge corpora when embedded and integrated into artificial intelligence-driven natural language processing workflows at scale.