91°µÍø

Skip to main content
SHARE
Publication

Two-Stream Multi-Channel Convolutional Neural Network for Multi-Lane Traffic Speed Prediction Considering Traffic Volume Impact

by Ruimin Ke, Wan Li, Zhiyong Cui, Yinhai Wang
Publication Type
Journal
Journal Name
Transportation Research Record
Publication Date
Page Numbers
459 to 470
Volume
2674
Issue
4

Traffic speed prediction is a critically important component of intelligent transportation systems. Recently, with the rapid development of deep learning and transportation data science, a growing body of new traffic speed prediction models have been designed that achieved high accuracy and large-scale prediction. However, existing studies have two major limitations. First, they predict aggregated traffic speed rather than lane-level traffic speed; second, most studies ignore the impact of other traffic flow parameters in speed prediction. To address these issues, the authors propose a two-stream multi-channel convolutional neural network (TM-CNN) model for multi-lane traffic speed prediction considering traffic volume impact. In this model, the authors first introduce a new data conversion method that converts raw traffic speed data and volume data into spatial–temporal multi-channel matrices. Then the authors carefully design a two-stream deep neural network to effectively learn the features and correlations between individual lanes, in the spatial–temporal dimensions, and between speed and volume. Accordingly, a new loss function that considers the volume impact in speed prediction is developed. A case study using 1-year data validates the TM-CNN model and demonstrates its superiority. This paper contributes to two research areas: (1) traffic speed prediction, and (2) multi-lane traffic flow study.