Abstract
Generic features associated with the adsorption of proteins on solid surfaces are reviewed within the framework of the hydrophobic-polar (HP) lattice protein model. The thermodynamic behavior and structural properties of various HP protein sequences interacting with attractive surfaces have been studied using extensive Wang-Landau sampling with different types of surfaces, each of which attracts either: all monomers, only hydrophobic (H) monomers, or only polar (P) monomers, respectively. Consequently, different types of folding behavior occur for varied surface strengths. Analysis of the combined patterns of various structural observables, e.g., the derivatives of the numbers of interaction contacts, together with the specific heat, leads to the identification of fundamental categories of folding and transition hierarchies. We also inferred a connection between the transition categories and the relative surface strengths, i.e., the ratios of the surface attractive
strengths to the intra-chain attraction among H monomers. We thus believe that the folding hierarchies and identification scheme are generic for different HP sequences interacting with attractive surfaces, regardless of the chain length, sequence, or surface attraction.