Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Corson Cramer
- Steve Bullock
- Ali Passian
- Greg Larsen
- James Klett
- Trevor Aguirre
- Vlastimil Kunc
- Aaron Myers
- Ahmed Hassen
- Beth L Armstrong
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Claire Marvinney
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Eve Tsybina
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jordan Wright
- Justin Cazares
- Matt Larson
- Michael Kirka
- Nadim Hmeidat
- Nance Ericson
- Sana Elyas
- Srikanth Yoginath
- Steven Guzorek
- Tomonori Saito
- Tony Beard
- Varisara Tansakul
- Viswadeep Lebakula

The technologies provide additively manufactured thermal protection system.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

The ID provides a solution approach for faster chemical processing and carbon functional grading from SiC to MC to provide a tougher carbon and CMC structure.