Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Aaron Werth
- Alexander I Wiechert
- Ali Passian
- Costas Tsouris
- Debangshu Mukherjee
- Diana E Hun
- Easwaran Krishnan
- Emilio Piesciorovsky
- Gary Hahn
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- James Manley
- Jamieson Brechtl
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Md Inzamam Ul Haque
- Mengjia Tang
- Muneeshwaran Murugan
- Nance Ericson
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Raymond Borges Hink
- Srikanth Yoginath
- Tomonori Saito
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge
- Yarom Polsky
- Zoriana Demchuk

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.