Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Vivek Sujan
- Adam M Guss
- Joseph Chapman
- Nicholas Peters
- Omer Onar
- Adam Siekmann
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Erdem Asa
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Kuntal De
- Muneer Alshowkan
- Subho Mukherjee
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Anees Alnajjar
- Austin Carroll
- Brian Sanders
- Brian Williams
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Hyeonsup Lim
- Ilenne Del Valle Kessra
- Isabelle Snyder
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Mengdawn Cheng
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Serena Chen
- Shajjad Chowdhury
- Soydan Ozcan
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.