Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Ali Passian
- Peeyush Nandwana
- Joseph Chapman
- Nicholas Peters
- Omer Onar
- Adam Siekmann
- Amit Shyam
- Blane Fillingim
- Brian Post
- Erdem Asa
- Hsuan-Hao Lu
- Joseph Lukens
- Lauren Heinrich
- Muneer Alshowkan
- Rangasayee Kannan
- Subho Mukherjee
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alex Plotkowski
- Andres Marquez Rossy
- Anees Alnajjar
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Claire Marvinney
- Gordon Robertson
- Harper Jordan
- Hyeonsup Lim
- Isabelle Snyder
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Mariam Kiran
- Nance Ericson
- Peter Wang
- Ryan Dehoff
- Shajjad Chowdhury
- Srikanth Yoginath
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.