Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Bryan Maldonado Puente
- Corey Cooke
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Mark M Root
- Michael Kirka
- Nithin Panicker
- Nolan Hayes
- Obaid Rahman
- Paul Abraham
- Peter Wang
- Prashant Jain
- Ryan Kerekes
- Sally Ghanem
- Vittorio Badalassi
- Xiaohan Yang
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.