Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Alexander I Wiechert
- Alice Perrin
- Anees Alnajjar
- Brian Williams
- Christopher Ledford
- Costas Tsouris
- Debangshu Mukherjee
- Gs Jung
- Gyoung Gug Jang
- Mariam Kiran
- Md Inzamam Ul Haque
- Michael Kirka
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Ryan Dehoff
- Yan-Ru Lin
- Ying Yang

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.

An ultrabroadband, polarization-entangled photon source for C+L-band quantum networks, enabling adaptive, high-fidelity entanglement distribution.