Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Andrzej Nycz
- Josh Michener
- Kuntal De
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Alice Perrin
- Austin Carroll
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Christopher Ledford
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Glenn R Romanoski
- Govindarajan Muralidharan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Kyle Davis
- Liangyu Qian
- Michael Kirka
- Patxi Fernandez-Zelaia
- Paul Abraham
- Rose Montgomery
- Ryan Dehoff
- Serena Chen
- Thomas R Muth
- Venugopal K Varma
- Vilmos Kertesz
- Vincent Paquit
- Yan-Ru Lin
- Yang Liu
- Ying Yang

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.