Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Singanallur Venkatakrishnan
- Amir K Ziabari
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Philip Bingham
- Ryan Dehoff
- Scott Smith
- Sergiy Kalnaus
- Vincent Paquit
- Akash Jag Prasad
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Calen Kimmell
- Diana E Hun
- Emma Betters
- Georgios Polyzos
- Gina Accawi
- Greg Corson
- Gurneesh Jatana
- Jaswinder Sharma
- Jesse Heineman
- John Potter
- Josh B Harbin
- Mark M Root
- Michael Kirka
- Nancy Dudney
- Obaid Rahman
- Philip Boudreaux
- Tony L Schmitz
- Vladimir Orlyanchik

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.