Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Amit K Naskar
- David Olvera Trejo
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Scott Smith
- Akash Jag Prasad
- Arit Das
- Benjamin L Doughty
- Brian Gibson
- Brian Post
- Calen Kimmell
- Christopher Bowland
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Greg Corson
- Holly Humphrey
- Jesse Heineman
- John Potter
- Josh B Harbin
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Tony L Schmitz
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

The technologies described herein provides for the High Temperature Carbonization (HTC) in the manufacturing of carbon fibers (CF). The conventional method for HTC is based in thermal radiation and this technology uses in a liquid medium.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

The widespread use of inexpensive salt hydrate-based phase change materials, or PCMs, has been prevented by a key technical challenge: phase separation, also known as incongruency, which results in the significant degradation of the materials' ability to store thermal energy o