Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Benjamin Manard
- Cyril Thompson
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Brad Johnson
- Callie Goetz
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Eddie Lopez Honorato
- Fred List III
- Hsin Wang
- James Klett
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Keith Carver
- Matt Kurley III
- Matt Vick
- Mike Zach
- Nedim Cinbiz
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Thomas Butcher
- Tony Beard
- Tyler Gerczak
- Vandana Rallabandi

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.