Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alexey Serov
- Costas Tsouris
- Gurneesh Jatana
- Jaswinder Sharma
- Jonathan Willocks
- Todd Toops
- Vincent Paquit
- Xiang Lyu
- Yeonshil Park
- Akash Jag Prasad
- Alexander I Wiechert
- Amit K Naskar
- Benjamin Manard
- Beth L Armstrong
- Calen Kimmell
- Canhai Lai
- Charles F Weber
- Chris Tyler
- Clay Leach
- Dhruba Deka
- Diana E Hun
- Gabriel Veith
- Georgios Polyzos
- Gina Accawi
- Haiying Chen
- Holly Humphrey
- James Haley
- James Parks II
- James Szybist
- Jaydeep Karandikar
- Joanna Mcfarlane
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Mark M Root
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Philip Boudreaux
- Ritu Sahore
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Sreshtha Sinha Majumdar
- Vandana Rallabandi
- Vladimir Orlyanchik
- William P Partridge Jr
- Zackary Snow

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.