Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Singanallur Venkatakrishnan
- Vincent Paquit
- Amir K Ziabari
- Blane Fillingim
- Brian Post
- Diana E Hun
- Josh Michener
- Lauren Heinrich
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Sudarsanam Babu
- Thomas Feldhausen
- Xiaohan Yang
- Yousub Lee
- Alexander I Wiechert
- Alex Walters
- Andrzej Nycz
- Austin Carroll
- Bryan Maldonado Puente
- Carrie Eckert
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Debangshu Mukherjee
- Gerald Tuskan
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Kyle Davis
- Liangyu Qian
- Mark M Root
- Md Inzamam Ul Haque
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Paul Abraham
- Peter Wang
- Radu Custelcean
- Ramanan Sankaran
- Ryan Kerekes
- Sally Ghanem
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Vimal Ramanuj
- Wenjun Ge
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.