Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Blane Fillingim
- Brian Post
- Ethan Self
- Jaswinder Sharma
- Lauren Heinrich
- Peeyush Nandwana
- Robert Sacci
- Sergiy Kalnaus
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Felipe Polo Garzon
- Georgios Polyzos
- Ilias Belharouak
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Ramanan Sankaran
- Sai Krishna Reddy Adapa
- Vera Bocharova
- Vimal Ramanuj
- Wenjun Ge
- Xiang Lyu

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Adhesives for metal parts typically are liquid-based which require complex processing. This technology is a hot melt adhesive that is mixed and applied in a solid form and after the heating and cooling cycle creates strong bonds with the substrates in a matter of seconds.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

Nearly all electrochemical approaches to CO2 conversion rely on traditional fuel cell type electrocatalysis where CO2 is bubbled through acidic or basic media. The resulting electrochemistry leads to excessive generation of H2 over micromoles of CO2 conversion.