Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Costas Tsouris
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Andrew Sutton
- Michelle Kidder
- Peter Wang
- Radu Custelcean
- Alex Walters
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Gyoung Gug Jang
- Lawrence {Larry} M Anovitz
- Michael Kirka
- Michelle Lehmann
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Tomonori Saito
- Adam Stevens
- Alexander I Wiechert
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brian Post
- Clay Leach
- Ethan Self
- Gs Jung
- Jaswinder Sharma
- Joshua Vaughan
- Luke Meyer
- Michael Cordon
- Peeyush Nandwana
- Philip Bingham
- Robert Sacci
- Sergiy Kalnaus
- Udaya C Kalluri
- William Carter
- Ajibola Lawal
- Akash Jag Prasad
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Amit Shyam
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin Manard
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chanho Kim
- Charles F Weber
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Dhruba Deka
- Diana E Hun
- Erin Webb
- Evin Carter
- Felipe Polo Garzon
- Georgios Polyzos
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Ilias Belharouak
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jeremy Malmstead
- Jesse Heineman
- Joanna Mcfarlane
- John Potter
- Jonathan Willocks
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Kitty K Mccracken
- Liam White
- Logan Kearney
- Mark M Root
- Matthew S Chambers
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nihal Kanbargi
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peng Yang
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Soydan Ozcan
- Sreshtha Sinha Majumdar
- Sudarsanam Babu
- Tyler Smith
- Vandana Rallabandi
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xiang Lyu
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Yeonshil Park
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.