Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Joseph Chapman
- Nicholas Peters
- Ying Yang
- Adam Willoughby
- Alexey Serov
- Ali Abouimrane
- Beth L Armstrong
- Bruce A Pint
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Marm Dixit
- Meghan Lamm
- Muneer Alshowkan
- Rishi Pillai
- Ruhul Amin
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Amit K Naskar
- Anees Alnajjar
- Ben Lamm
- Ben LaRiviere
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Charles Hawkins
- Christopher Ledford
- David L Wood III
- Eric Wolfe
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jiheon Jun
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Mariam Kiran
- Marie Romedenne
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nidia Gallego
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Paul Groth
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Ritu Sahore
- Ryan Dehoff
- Shajjad Chowdhury
- Tim Graening Seibert
- Todd Toops
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yaocai Bai
- Yong Chae Lim
- Zhijia Du
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.