Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Alice Perrin
- Costas Tsouris
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alexander I Wiechert
- Alex Plotkowski
- Amit Shyam
- Benjamin Manard
- Bruce A Pint
- Charles F Weber
- Christopher Ledford
- David S Parker
- Debjani Pal
- Gerry Knapp
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Isaac Sikkema
- James A Haynes
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Kunal Mondal
- Kuntal De
- Mahim Mathur
- Matt Vick
- Michael Kirka
- Mina Yoon
- Mingyan Li
- Nicholas Richter
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Rose Montgomery
- Ryan Dehoff
- Sam Hollifield
- Sumit Bahl
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 簣 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.

High-performance cerium-based permanent magnet materials have been developed to reduce reliance on scarce rare-earth elements.

An ORNL team has developed a method for screening for an immunoregulatory protein, which includes assessing the sequence of a candidate protein to determine if it is an immunoregulatory protein when at least one plasminogen-apple-nematode (PAN) domain with a consensus sequence