Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Alexey Serov
- Alice Perrin
- Jaswinder Sharma
- Steven J Zinkle
- Vlastimil Kunc
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Ahmed Hassen
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Beth L Armstrong
- Bruce A Pint
- Christopher Ledford
- Costas Tsouris
- Dan Coughlin
- David S Parker
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- James A Haynes
- James Szybist
- Jim Tobin
- Jonathan Willocks
- Jong K Keum
- Josh Crabtree
- Junbin Choi
- Khryslyn G Araño
- Kim Sitzlar
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Merlin Theodore
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Ritu Sahore
- Ryan Dehoff
- Steven Guzorek
- Subhabrata Saha
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Vipin Kumar
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.