Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Peeyush Nandwana
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Mingyan Li
- Sam Hollifield
- Alice Perrin
- Amir K Ziabari
- Beth L Armstrong
- Brian Post
- Brian Weber
- Bryan Lim
- Corson Cramer
- Fred List III
- Isaac Sikkema
- James Klett
- Joseph Olatt
- Keith Carver
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- T Oesch
- Tomas Grejtak
- Trevor Aguirre
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.