Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Blane Fillingim
- Brian Post
- Diana E Hun
- Lauren Heinrich
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Bryan Maldonado Puente
- Claire Marvinney
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Mark M Root
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Ramanan Sankaran
- Ryan Kerekes
- Sally Ghanem
- Srikanth Yoginath
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.