Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Akash Jag Prasad
- Calen Kimmell
- Canhai Lai
- Christopher Hobbs
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Eddie Lopez Honorato
- James Haley
- James Parks II
- Jaydeep Karandikar
- Matt Kurley III
- Ramanan Sankaran
- Rodney D Hunt
- Ryan Dehoff
- Ryan Heldt
- Tyler Gerczak
- Vimal Ramanuj
- Vladimir Orlyanchik
- Wenjun Ge
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

This invention is about a multifunctional structured packing device that can simultaneously facilitate heat and mass transfer in packed distillation, absorption, and liquid extraction columns, as well as in multiphase reactors.