Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Chad Steed
- Diana E Hun
- Junghoon Chae
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Sam Hollifield
- Stephen M Killough
- Travis Humble
- Vincent Paquit
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Weber
- Bryan Maldonado Puente
- Charlie Cook
- Christopher Hershey
- Corey Cooke
- Craig Blue
- Daniel Rasmussen
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- Isaac Sikkema
- James Klett
- John Lindahl
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mary A Adkisson
- Michael Kirka
- Mike Zach
- Nedim Cinbiz
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- T Oesch
- Tony Beard

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.