Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Peeyush Nandwana
- Joseph Chapman
- Nicholas Peters
- Amit Shyam
- Andrzej Nycz
- Biruk A Feyissa
- Blane Fillingim
- Brian Post
- Carrie Eckert
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Kuntal De
- Lauren Heinrich
- Muneer Alshowkan
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yousub Lee
- Alex Plotkowski
- Alex Roschli
- Alex Walters
- Andres Marquez Rossy
- Anees Alnajjar
- Austin Carroll
- Brian Sanders
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Gordon Robertson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Mengdawn Cheng
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Peter Wang
- Ryan Dehoff
- Serena Chen
- Soydan Ozcan
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Tyler Smith
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yang Liu
- Yanli Wang
- Yasemin Kaygusuz
- Ying Yang
- Yiyu Wang
- Yutai Kato

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.