Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Joseph Chapman
- Nicholas Peters
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Hongbin Sun
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Kuntal De
- Muneer Alshowkan
- Prashant Jain
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander I Wiechert
- Alex Roschli
- Alex Walters
- Andrew F May
- Anees Alnajjar
- Austin Carroll
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Sanders
- Brian Williams
- Callie Goetz
- Charles F Weber
- Chris Masuo
- Christopher Hobbs
- Clay Leach
- Costas Tsouris
- Daniel Jacobson
- Debjani Pal
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Gerald Tuskan
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaac Sikkema
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- John F Cahill
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kitty K Mccracken
- Kunal Mondal
- Kyle Davis
- Liangyu Qian
- Mahim Mathur
- Mariam Kiran
- Matt Kurley III
- Matt Vick
- Mengdawn Cheng
- Mike Zach
- Mingyan Li
- Nandhini Ashok
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oluwafemi Oyedeji
- Oscar Martinez
- Paul Abraham
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Serena Chen
- Soydan Ozcan
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Tyler Smith
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.