Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Josh Michener
- Kuntal De
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Austin Carroll
- Brian Sanders
- Callie Goetz
- Chris Masuo
- Christopher Hobbs
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Keith Carver
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Matt Kurley III
- Mengdawn Cheng
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Serena Chen
- Soydan Ozcan
- Thomas Butcher
- Tyler Gerczak
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.