Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Alice Perrin
- Amir K Ziabari
- Diana E Hun
- Hongbin Sun
- Michael Kirka
- Philip Bingham
- Philip Boudreaux
- Prashant Jain
- Stephen M Killough
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- Bruce A Pint
- Bryan Maldonado Puente
- Christopher Ledford
- Corey Cooke
- Costas Tsouris
- Gerry Knapp
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Ian Greenquist
- Ilias Belharouak
- James A Haynes
- Jong K Keum
- Mark M Root
- Mina Yoon
- Nate See
- Nicholas Richter
- Nithin Panicker
- Nolan Hayes
- Obaid Rahman
- Patxi Fernandez-Zelaia
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Radu Custelcean
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.