Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Peeyush Nandwana
- Ritin Mathews
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Yong Chae Lim
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Ryan Dehoff
- Scott Smith
- William Carter
- Yaosuo Xue
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Beth L Armstrong
- Brian Gibson
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Fei Wang
- Fred List III
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiheon Jun
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Michael Borish
- Phani Ratna Vanamali Marthi
- Philip Bingham
- Priyanshi Agrawal
- Rafal Wojda
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Sreenivasa Jaldanki
- Steve Bullock
- Steven Guzorek
- Suman Debnath
- Sunil Subedi
- Thomas Butcher
- Tomas Grejtak
- Tony L Schmitz
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yiyu Wang
- Yonghao Gui
- Yukinori Yamamoto
- Zhili Feng

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.