Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Chad Steed
- Hongbin Sun
- Junghoon Chae
- Prashant Jain
- Travis Humble
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Claire Marvinney
- Costas Tsouris
- Eddie Lopez Honorato
- Fred List III
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nance Ericson
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Samudra Dasgupta
- Srikanth Yoginath
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.