Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Hongbin Sun
- Prashant Jain
- Ruhul Amin
- Alexander I Wiechert
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- David L Wood III
- Georgios Polyzos
- Govindarajan Muralidharan
- Ian Greenquist
- Isaac Sikkema
- Jaswinder Sharma
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junbin Choi
- Kunal Mondal
- Lu Yu
- Mahim Mathur
- Marm Dixit
- Matt Vick
- Mingyan Li
- Nate See
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rose Montgomery
- Sam Hollifield
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Yaocai Bai
- Zhijia Du

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.