Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alexey Serov
- Jaswinder Sharma
- Xiang Lyu
- Amit K Naskar
- Beth L Armstrong
- Callie Goetz
- Christopher Hobbs
- Eddie Lopez Honorato
- Fred List III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jason Jarnagin
- Jonathan Willocks
- Junbin Choi
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Mark Provo II
- Marm Dixit
- Matt Kurley III
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Richard Howard
- Ritu Sahore
- Rob Root
- Rodney D Hunt
- Ryan Heldt
- Thomas Butcher
- Todd Toops
- Tyler Gerczak

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.