Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Ali Abouimrane
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Ruhul Amin
- Anees Alnajjar
- Brian Williams
- Christopher Hobbs
- Claire Marvinney
- David L Wood III
- Eddie Lopez Honorato
- Georgios Polyzos
- Harper Jordan
- Hongbin Sun
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Junbin Choi
- Lu Yu
- Mariam Kiran
- Marm Dixit
- Matt Kurley III
- Nance Ericson
- Pradeep Ramuhalli
- Rodney D Hunt
- Ryan Heldt
- Srikanth Yoginath
- Tyler Gerczak
- Varisara Tansakul
- Yaocai Bai
- Zhijia Du

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.