Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Rangasayee Kannan
- Sudarsanam Babu
- Amit Shyam
- Hongbin Sun
- Lauren Heinrich
- Michael Kirka
- Prashant Jain
- Thomas Feldhausen
- Vincent Paquit
- Ying Yang
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Andres Marquez Rossy
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gordon Robertson
- Ian Greenquist
- Ilias Belharouak
- James Haley
- Jay Reynolds
- Jeff Brookins
- Nate See
- Nithin Panicker
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.