Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Michael Kirka
- Stephen M Killough
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Benjamin Manard
- Blane Fillingim
- Brian Post
- Bryan Maldonado Puente
- Charles F Weber
- Christopher Ledford
- Clay Leach
- Corey Cooke
- Costas Tsouris
- David Nuttall
- Diana E Hun
- Govindarajan Muralidharan
- Isaac Sikkema
- James Haley
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Mingyan Li
- Nolan Hayes
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.