Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Srikanth Yoginath
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Kyle Kelley
- Michael Kirka
- Peeyush Nandwana
- Pratishtha Shukla
- Rangasayee Kannan
- Sudip Seal
- Travis Humble
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Anton Ievlev
- Arpan Biswas
- Blane Fillingim
- Brian Post
- Bryan Lim
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gerd Duscher
- Harper Jordan
- James Haley
- Joel Asiamah
- Joel Dawson
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Nance Ericson
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Philip Bingham
- Roger G Miller
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Sarah Graham
- Singanallur Venkatakrishnan
- Stephen Jesse
- Sudarsanam Babu
- Sumner Harris
- Tomas Grejtak
- Utkarsh Pratiush
- Varisara Tansakul
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.