Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Lawrence {Larry} M Anovitz
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew G Stack
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Debangshu Mukherjee
- James Haley
- Juliane Weber
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peng Yang
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.