Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) National Security Sciences Directorate (17)
- (-) User Facilities (27)
Researcher
- Ali Passian
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Joseph Chapman
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nicholas Peters
- Olga S Ovchinnikova
- Sam Hollifield
- Chad Steed
- Costas Tsouris
- Hsuan-Hao Lu
- Joseph Lukens
- Junghoon Chae
- Kashif Nawaz
- Michael Kirka
- Mingyan Li
- Muneer Alshowkan
- Stephen Jesse
- Travis Humble
- Vincent Paquit
- Aaron Myers
- Aaron Werth
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Benjamin Manard
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brian Weber
- Brian Williams
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Claire Marvinney
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David Nuttall
- Debangshu Mukherjee
- Derek Dwyer
- Emilio Piesciorovsky
- Eve Tsybina
- Gary Hahn
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- James Haley
- James Klett
- Jamieson Brechtl
- Jason Jarnagin
- Jewook Park
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Justin Cazares
- Kai Li
- Kevin Spakes
- Kunal Mondal
- Kyle Gluesenkamp
- Liam Collins
- Lilian V Swann
- Louise G Evans
- Luke Koch
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Mark Provo II
- Marti Checa Nualart
- Mary A Adkisson
- Matt Larson
- Matt Vick
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mina Yoon
- Nance Ericson
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Raymond Borges Hink
- Richard L. Reed
- Rob Root
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- T Oesch
- Tony Beard
- Utkarsh Pratiush
- Vandana Rallabandi
- Varisara Tansakul
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.