Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Anees Alnajjar
- Alexander I Wiechert
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Craig A Bridges
- Diana E Hun
- Easwaran Krishnan
- Govindarajan Muralidharan
- Isaac Sikkema
- James Manley
- Jamieson Brechtl
- Joanna Mcfarlane
- Joe Rendall
- Jonathan Willocks
- Joseph Olatt
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Kunal Mondal
- Mahim Mathur
- Mariam Kiran
- Matt Vick
- Mengjia Tang
- Mingyan Li
- Muneeshwaran Murugan
- Nageswara Rao
- Oscar Martinez
- Rose Montgomery
- Sam Hollifield
- Sheng Dai
- Thomas R Muth
- Tomonori Saito
- Vandana Rallabandi
- Venugopal K Varma
- Zoriana Demchuk

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.