Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Adam Willoughby
- Alice Perrin
- Anees Alnajjar
- Bruce A Pint
- Edgar Lara-Curzio
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles Hawkins
- Christopher Ledford
- Costas Tsouris
- Craig A Bridges
- David S Parker
- Eric Wolfe
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jiheon Jun
- Jong K Keum
- Mariam Kiran
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Radu Custelcean
- Ryan Dehoff
- Shajjad Chowdhury
- Sheng Dai
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.