Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Mary Danielson
- Syed Islam
- Alexei P Sokolov
- Anees Alnajjar
- Catalin Gainaru
- Michelle Lehmann
- Natasha Ghezawi
- Ramesh Bhave
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Benjamin L Doughty
- Callie Goetz
- Christopher Hobbs
- Corson Cramer
- Craig A Bridges
- Eddie Lopez Honorato
- Fred List III
- Isaiah Dishner
- Josh Michener
- Karen Cortes Guzman
- Keith Carver
- Kuma Sumathipala
- Liangyu Qian
- Mariam Kiran
- Matt Kurley III
- Mengjia Tang
- Nageswara Rao
- Nick Galan
- Nick Gregorich
- Richard Howard
- Robert Sacci
- Rodney D Hunt
- Ryan Heldt
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Sheng Dai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tao Hong
- Thomas Butcher
- Tyler Gerczak
- Uvinduni Premadasa

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).