Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Costas Tsouris
- David Olvera Trejo
- Hongbin Sun
- J.R. R Matheson
- Jaydeep Karandikar
- Prashant Jain
- Scott Smith
- Akash Jag Prasad
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Brian Post
- Calen Kimmell
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Eddie Lopez Honorato
- Emma Betters
- Fred List III
- Govindarajan Muralidharan
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jesse Heineman
- Joanna Mcfarlane
- John Potter
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Josh B Harbin
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Radu Custelcean
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Thomas Butcher
- Thomas R Muth
- Tony L Schmitz
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.