Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Srikanth Yoginath
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Pratishtha Shukla
- Rob Moore II
- Sudip Seal
- Travis Humble
- Ali Passian
- Bryan Lim
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Matthew Brahlek
- Mina Yoon
- Nance Ericson
- Pablo Moriano Salazar
- Peeyush Nandwana
- Radu Custelcean
- Rangasayee Kannan
- Samudra Dasgupta
- Tomas Grejtak
- Varisara Tansakul
- Yiyu Wang

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Molecular Beam Epitaxy is a traditional technique for the synthesis of thin film materials used in the semiconducting and microelectronics industry. In its essence, the MBE technique heats crucibles filled with ultra-pure atomic elements under ultra high vacuum condition

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.