Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Philip Bingham
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Travis Humble
- Vincent Paquit
- Ali Passian
- Bryan Lim
- Christopher Hobbs
- Diana E Hun
- Eddie Lopez Honorato
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Mark M Root
- Matt Kurley III
- Michael Kirka
- Nance Ericson
- Obaid Rahman
- Pablo Moriano Salazar
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Rodney D Hunt
- Ryan Heldt
- Samudra Dasgupta
- Tomas Grejtak
- Tyler Gerczak
- Varisara Tansakul
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.